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Abstract—This article gives an overview of the work conducted
in the European project CogLaboration for improving human
robot interaction through object exchange that has been itera-
tively used for around a thousand of interactions. A perception
layer using Kinect cameras tracks the object and the human
partner’s hand and triggers the main robot motion phases. A
dedicated object exchange database contains not only the object
grasping poses, but also expected hand postures and object
orientations to adjust respectively the delivery and grasping
strategies. The control of the 7-DoFs LWR arm is designed
using the DMP framework. It allows the handling of transport
constraints, the online detection of any potential arm kinematics
violation and the run-time requesting of a new motion pattern
to alleviate this risk. The robot anthropomorphic hand has been
equipped with an exteroceptive sensory system (tactile and force)
for triggering the handover phases. Comparison of Human-Robot
exchange and benchmarking data obtained from Human-Human
object transfer points to areas for potential improvement.

I. INTRODUCTION

Recent research results in robotics now make conceivable
the close collaboration of humans and robots. In that context,
object exchange, a key capability for creating such efficient
collaboration, has been an area of increasing interest in recent
years. In [[15] a multi-criteria cost-map is defined to deduce the
most appropriate exchange site. In [9], various motion profiles
are compared to define the one most appreciated by humans. In
most of these works, the critical handover procedure was not
explicitly considered. [1]] analyzed by experimentation whether
humans preferred the robot to grasp the object with a reactive
or fixed grasp mode, but the exchange site was once more
defined off-line and not adjusted on line. In [2], the authors
focused on the handover procedure through the analysis of the
force perceived in the robotic hand that remained static, while
humans can do so even when their arm is still moving.

We propose a more reactive exchange procedure in which
the exchange location is adapted according to the perceived
human motion, and the handover phase is detected even if the
robot is moving. This article provides a general overview of
the CogLaboration results, from the overall architecture (II)),
the arm control mechanism (II), the anthropomorphic hand
extension ([V), the perception layer and the dedicated
exchange database , to the human observation effort done
for benchmarking the robotic system proposed (VII).

II. OVERALL ARCHITECTURE

The CogLaboration prototype has been implemented un-
der the ROS framework. Hierarchical state machines (smach
package) orchestrate the operations by triggering the different
components involved in the object exchange and easing the
information transmission between nodes.

Figure [I] describes the meta operations involved in the
robot to human interaction. First information is requested from
the knowledgebase to adjust the motion pattern for the next
handover (like the object (or hand) to end-effector pose for
grasping (delivering) the object, potential transport constraint,
suitable grasping mode like cylindrical, tri-digital, etc.). The
perception layer (here the human hand tracker) is then started.
Once it detects the human motion, the robot automatically
moves towards the learned exchange site. During the motion,
the handover (grasping or delivery) mode is assessed. The
preselected one is connected to an expected human behavior.
If the human behavior observed is related to another handover
mode, the robot strategy is adapted accordingly. The criteria
used are the object orientation and the human hand posture,
respectively in the human to robot (HR) and robot to human
(RH) exchanges. The human motion monitoring detects also if
the human moves towards an exchange site different from the
learned one. If so, the robot switches the goal location to the
real one observed. The contact monitoring is also launched,
through sensors embedded in the arm and in the hand. This
will trigger the hand opening and the robot stops. Note that
contact detection can be done even if the robot is moving.
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Fig. 1. Tllustration of the Exchange RH CogLaboration State Machine
Finally, the robot moves back to its rest position, launched

processes are inactivated and relevant information is stored to

adjust next exchanges (such as the observed exchange location


http://wiki.ros.org/smach

so that the robot can move directly towards it, and the handover
mode so that the robot can select it with priority later on).

III. ARM CONTROLLER

The control of the arm moving towards the exchange site
is designed using Dynamic Movement Primitives (DMP). We
proposed an extension of the basic formalism for better tuning
the transition (when and how fast) between feedforward and
feedback phases [[L1]. We experimented with it [[12], using as
reference motion pattern the Cartesian trajectory of a human
hand captured during behavioral analysis (see sec. [VII). The
goal location was set to the hand or object being tracked.

We saw two major limitations of such an implementation.
The first issue is that if the human behavior deviates from
the reference pattern, the robot may require high velocities
and accelerations to compensate for the error which may
make the robot reach its limits and enforce the saturation
of the velocities applied. The second drawback is that if the
human desires to exchange the object at another location, the
feedforward phase would delay the reaction to the feedback
phase, which is likely to make the first limitation occur.

The kinematic constraint violation has been alleviated in
three ways. Firstly, we designed the controller with a two-level
architecture. The high level component prepares the motion
pattern that the low-level component will apply and monitor.
The pattern executor is able to foresee any potential velocity
limit violation by applying a few iterations of the DMP scheme
in advance. If this occurs, it requires the high-level controller
to provide online a new motion pattern. Secondly we propose
to use the [reflexxes|library to generate the motion pattern. The
advantages of this library are two-folds: (i) it can generate a
trajectory pattern in real-time, and (ii) it is able to satisfy initial
and final velocity and acceleration requests. This is convenient
for smoothly online switching the motion pattern if the current
one is considered inappropriate. Thirdly, we decided to use
the joint space as main control space, to make sure the
trajectory generated by the pattern generator will respect the
robot constraint. Nevertheless, the Cartesian space is kept for
objects with transport constraints (like a cup that needs to be
maintained vertical). In such case only the Cartesian position
is handled by the DMP, while the hand orientation is adjusted
to the transport constraint.

The second limitation, related to the lack of adaptation of
the feedforward phase, is mitigated by adding an exchange
site learner: after each exchange, the location reached by
the human partner (obtained by the object or hand tracking
depending on the exchange direction) is recorded, and the next
exchange will be using a default motion pattern computed by
the pattern generator towards that location. This way, if the
human requests exchanges in a similar location in the future,
the robot will directly move towards that site.

IV. SENSORIZED ANTHROPOMORPHIC HAND

The robot hand is an improved version of the [H2-Azzurra
Hand commercialized by Prensilia Srl, Italy [3]: it consists of
five underactuated digits (two joints per digit, for a total of

Fig. 2. (a) IH2 Azzurra hand, (b) 2-axis force sensor embedded within the
compliant fingertip, (c) miniaturized tendon tension force sensor.

11 DoFs) driven by five motors which actuates the flexion-
extension of the thumb, index, middle, ring-little as a pair and
the ab-adduction of the thumb (see Fig. [2}(a)). The robot hand
is self-contained (i.e. all functional components are housed
within the size of the hand itself) and weighs 520g.

The robot hand has been provided with bio-inspired compliant
fingers [4] to increase the grasp capabilities and to ensure a
safe interaction with the human partner. Taking inspiration
from the multi-layered structure of the human finger, the
artificial fingertips developed comprise of a rigid core covered
by two layers of polymeric materials with different degrees
of stiffness and topped by a hard nail. This specific design is
crucial to obtain mechanical features and appearance similar
to the human fingertips.

The embedded control of the hand is arranged in a hierarchical
architecture consisting of five Low Level Motion Controllers
(LLMC) and one High Level Hand Controller (HLHC). Each
motor is directly actuated and controlled with a LLMC that
achieves position, force, and current control. All the LLMC
are controlled by the HLHC that regulates the overall hand
operations through high level functions (like automatic grasps
or automatic object release for a fluent handover [5]]) and acts
as interface with the external world.

Both control levels are crucially dependent on the artificial
sensory system of the hand (especially for cooperative ac-
tions). For this reason we extended the sensory system through
an exteroceptive and a proprioceptive sensory subsystem.
The first monitors and measures the interaction between the
grasped object and the robot hand, and between the object
and the environment (collision with an obstacle, contact with
the human partner, and so on). The second provides useful
information about hand kinematic and internal forces produced
in the hand transmission. The exteroceptive sensory system
consists of different sensors functionally emulating touch
sensors in the human skin using different low-cost and reliable
technologies, in particular: i) four tendon tension force sensors
(see Fig. (c), housed within the actuation unit of the hand
and monitoring the tensile force stressing the tendons that
drive the fingers), ii) three fingertip 2-axis force sensors (see
Fig. E]-(b), mounted on the Thumb, Index and Middle fingers,
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monitoring normal and tangential forces acting at the tip of the
finger), iii) two fingertip touch sensors (mounted on the Ring
and Little fingers, informing through a digital output about
the contact status), and iv) one palm touch sensor. All sensors
developed (excluding the tension force and the palm touch
sensors for practical reasons) are embedded in the compliant
fingertip developed [4].

V. PERCEPTION

The perception layer relies on two XBox 360 Kinect sensors
and several software modules developed using ROS and PCL
frameworks. The object recognition component is capable of
handling both particular instance and general object categories.
This system is based on multi-view model training and multi-
descriptor classification. A dataset of more than 300 point
clouds has been captured for evaluating the system, and an
accuracy of near 91% has been observed.

The object pose is estimated in two steps. The object loca-
tion is found using several segmentation and hand detection
strategies. The orientation is then computed using RANSAC
IA [14], and refined with the Iterative Closest Point [§]]
approach. For the challenging task of estimating the object
pose when held by the human, an orientation sensor developed
in the project improves the RANSAC estimation.

The human motion tracking system locates the human
hand and tracks it during the whole exchange process. It is
developed using multi-color space skin segmentation, skeleton
tracking and Kalman filtering prediction approaches [10].

Finally the perception layer monitors online the human han-
dover strategy in order to adjust the robot strategy accordingly.
In HR exchanges, the tracked object orientation is used to
check if the grasping mode initially selected remains relevant,
as stored within the knowledge base. In RH exchange, the
human hand posture is recognized through Gaussian Mixture
Models to adjust the robot approach strategy to the human
expectation [[13].

VI. OBJECT EXCHANGE KNOWLEDGEBASE

The object exchange database models the knowledge ac-
quired from human-human (HH) exchange experiments. The
database interoperability and extensibility is obtained using a
semantic-ontological [16] approach, complemented with a set
of ad-hoc utilities for easing the knowledge inference [17],
query and management tasks. Contrary to traditional relational
databases, the semantic-ontological modeling of the objects
taxonomy strongly eases the modification and extension of
the knowledgebase. The ontology model is based on the object
affordances concept [[7], described as the sum of the properties
of a situation, including agents, environment and objects,
especially those that describe how they can be used to act.

In addition to the object visual properties needed for the
Perception layer, the knowledgebase contains a set of features
characterizing the handover conditions. Each object is related
to a set of stable grasp poses and postures as provided by
the robot hand and based on the Cutkosky taxonomy [6], that
are indexed with respect to an expected object orientation. The

delivery mode is also considered, defining for each grasp mode
a list of possible delivery strategies (pose wrt to the hand,
approach direction, etc.) indexed to different expected human
partner hand postures. This extends the initial conception of a
grasping database to a fully-featured exchange knowledgebase.

VII. COMPARATIVE EXPERIMENTATION
A. Human-human interactions

In order to evaluate the performance of the robotic system,
a number of studies of human handover interaction were
first undertaken. Each study involved two participants, one
taking the role of assistant passing or receiving objects to
and from the other in order to move objects from one table
to another (see Fig. Ekleft)). The aim was to characterize the
efficacy of the handover action with regard to scenario changes
defining task (eg car mechanic vs activity of daily living),
posture (eg standing, seated, lying) assigned to the person
being assisted and as a function of the objects being transferred
and instructions to the participants to vary the style of the
handover (eg normal vs slow). Measures of the handover then
provided a benchmark for evaluating performance when the
robot takes the role of the assistant.

Fig. 3. Human Human (left) and Human Robot interactions (right)

Data collected during HH handover trials covered three
aspects. The first comprised subjective quality assessment of
the exchange defined with 9-point Likert-scale items such
as I was satisfied with the interaction, the interaction was
easy, etc. The second type of data collected involved motion
capture recordings of the participants hand positions. The third
focus was on motion of the objects, which were instrumented
to indicate contact by each participant, object orientation,
acceleration and jerk.

B. Human Robot interactions

In order to test the robotic handover system, two experi-
ments were performed, one with adults of working age and
the second with older adults over 55.

In general, the quality reports obtained by both populations
of users were satisfactory. In fact, participants reported their
interaction with the robot as a comfortable and safe experience.
They also judged the handovers overall as easy and natural,
with the robotic system behaving in a predictable way.

Quantitative results obtained by motion capture were com-
pared between the two populations of interest and the data
from the same scenario (activities of daily living) obtained
from the studies of HH interaction. Comparison was performed



on one spatial feature (handover correction: how much the user
needed to move to the handover position in order to handle the
object to the robot) and one temporal feature (movement peak
velocity while reaching the handover position) (see Fig. F).
In general, results of adults and elderly did not differ. On the
other hand, difference between HH and HR interaction was
significant in both the tested features, although relatively small.
This suggests that, despite the satisfaction of the user and the
reported usability of the system from a subjective perspective,
work has still to be done in order to achieve an interaction
comparable to the human one.
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Fig. 4. Comparison of peak velocity and spatial correction for younger (1),
elderly adults (2), and Human-Human transfer

Data from sensors embedded in the instrumented objects
also supported this position. In particular, exchange time was
approximately five times shorter in the HH trials compared to
HR trials. Moreover, the variation in object orientation during
the handover was two to three times larger in HR trials than in
HH trials. One interpretation of these differences might indeed
be an increase difficulty of the HR interaction compared with
Human-Human interaction.

VIII. CONCLUSION

This article has given an overview of the work conducted in
the CogLaboration project, in which we have proposed several
technical improvements, in terms of hardware in particular in
the design of tactile and force sensors for the anthropomorphic
hand, and in terms of software, for obtaining reactive arm
control, the appropriate visual perception of the scene, and a
dedicated knowledge database for object exchange. A special
feature of this work is that it considered human robot exchange
in both directions.

The dataset captured during human observation will be
made accessible as a benchmarking tool for further work
in this field. As the system experimentation has shown, the
human subjects give an overall good rating to the robot be-
havior. Nevertheless, the quantitative comparison with human
behavior shows that such formalism could be improved, in
term of velocity and reactivity, to get closer to the timing
observed with humans. The visual perception of the exchange
advancement, in particular at the handover phase, remains also
a challenging issue that would need to be tackled to get a more
fluid interaction with humans.

We encourage interested readers to visit the project website,
to get a deeper look at the different deliverables produced
during the project.
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