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Abstract—Autonomous Dynamical Systems (DS) has emerged
as an extremely flexible and powerful method for modeling
robotic tasks. Task execution of DS models is typically done in
an open-loop manner in combination with standard low level
controller, e.g. position controller or impedance controller. Such
an arrangement has two important drawbacks 1) it is not passive
and 2) the DS model can not respond to physical perturbations
on the robot body. These are severe limitations in tasks with
uncertain physical contacts, e.g. object handovers. We propose
a novel control architecture that closes the loop around the
DS, ensures passivity and allows tuning of the impedance. We
evaluate our approach in a comparative study in an uncertain
manipulation task with unexpected contact.

I. INTRODUCTION

Dynamical Systems (DS) has emerged as a general and
highly flexible means of representing robot motions. It has
been demonstrated that many of the proposed DS formulations
lend themselves well to learning, both in a supervised setting
as well as reinforcement learning. Furthermore, in special
cases qualitative properties such convergence to a limit cycle
or stability at an attractor point can be ensured regardless of
the data provided to the learning algorithm. We believe that
the capability of encoding not only a nominal motion plan
but also how the robot should respond to perturbations makes
the DS task representation very well suited to object handover
tasks which are characterized by a high amount of uncertainty
and specifically the need to instantly react to non-predicable
behavior of a human.

In parallel to the development of DS-based learning sys-
tems, the field of robotic manipulation has in recent years seen
an revitalized interest in control of mechanical interaction,
a topic which largely rests upon foundations of Hogans
impedance control formulation [4]. To use a DS task rep-
resentation with an impedance controller, it is necessary to
integrate the DS over time to yield a reference trajectory, see
Fig. 1 left. In such a configuration, the reactivity of the DS
is used with respect to perturbations that are captured using
external sensors, e.g. the pose estimate of a moving target
point or obstacles. However, the full power of the DS is not
used, since the integration of the reference trajectory disallows
the DS to react to physical perturbations on the robot. For
physical interaction tasks such as hand-overs, such reactivity
can be crucial, and it would hence be desirable to instead use
a controller that feeds back the actual state of the robot to the
DS, see 1, right.

An important property for controllers interacting with un-
known environments is passivity. A controller that ensures a
passive relation between external forces and robot velocity

Controller RobotDS
1/s

xd

vd

u

x,v

Controller RobotDS vd u

v

Initialization at beginning of motion

Perceptual input Environment EnvironmentPerceptual input

x

DS in open loop configuration DS in feedback configuration

Legend

xd, vd  desired position, desired velocity
xd, vd  actual position, actual velocity
u      control command

Fig. 1. Illustration of open loop and closed loop control configurations with
DS. In the open loop configuration, the DS is updated with the desired position
resulting from integration of the desired velocity. The actual position of the
robot is only used for initializing the integration at the beginning of the motion.
In contrast, the feedback configuration continuously updates the DS with the
actual position and realizes a control on the velocity error.

will yield stable behavior in free motion and in contact with
any passive environment [1]. In this sense, classic impedance
control is only passive in the regulation case and the passivity
can no longer be ensured if the desired velocity is non-zero.
The loss of passivity during tracking is an important drawback
of impedance control and a problem that arises in any con-
troller driven by time-indexed reference trajectories. A through
analysis of this problem is provided in [6], which advocates
to tackle it by encoding tasks using time-independent velocity
fields (first order DS) and proposes a controller that ensures
allows tracking of desired DS. Related work has proposed a
similar approach for passivity in the curve tracking problem
[2]. These works exploit a time-independent encoding of the
task to ensure passivity and energy-efficient, accurate tracking
of the DS. The closed-loop dynamics are however rather
complicated and the specification of a mechanical impedance
becomes non-intuitive.

In this work, we aim to combine the advantages of
impedance control and a passive control system without de-
pendency on time. In contrast to [6] and [2] which are based
on redistribution of kinetic energy along the desired direction
of motion, we propose a control structure which is based on
selective dissipation of energy in directions that are irrelevant
to the task. As we shall see, this allows to easily tune the
mechanical impedance while ensuring passivity.

We evaluate our controller in a robotic reaching task with
limited knowledge on 1) the robot dynamics and 2) the
environment. We show that the proposed controller has ad-
vantages over classical impedance control both in respecting
the shape of the desired motion as well as keeping forces low
in unexpected contact.



II. PROBLEM STATEMENT

Let f(ξ) be a Dynamical System describing a nominal
motion plan for a robotic task. The variable ξ represents a
generalized state variable, which could be e.g. robot joint
angles or Cartesian position. Any integral curve of f represents
the desired motion of the robot in the absence of perturbations.
We consider rigid-body dynamics described in the generalized
state variable ξ:

M(ξ)ξ̈ + C(ξ, ξ̇)ξ̇ + g(ξ) = τ c + τ e (1)

The goal of this work is to design a controller τ c so that Eq.
(1) has the following properties:

1) Passivity (τ e, ξ̇) should be preserved for the controlled
system.

2) The controller should dissipate kinetic energy in direc-
tions not relevant for the task.

3) It should be possible to vary task-based impedance if the
manipulator, e.g. how dynamics defining how external
forces τ e affect the velocity ξ̇.

III. SELECTIVE DISSIPATION VIA VARYING DAMPING

Our controller is based on a state-varying damping term that
dissipates selectively in directions orthogonal to the desired
direction of motion given by f(ξ). Let e1, . . . , eN be an
orthonormal basis for RN with e1 pointing in the desired
direction of motion. Let the matrix Q(ξ) ∈ RN×N be a
matrix whose columns are given by e1, . . . , eN . This matrix
is a function of the state ξ, since the vectors e1 and hence
all e1, . . . eN depend on ξ via f(ξ). We then define the state-
varying damping matrix D(ξ) as follows:

D(ξ) = Q(ξ)ΛQ(ξ)T (2)

where Λ is a diagonal matrix with non-negative values on
the diagonal λ1, . . . , λN ≥ 0. By adjusting the eigenvalues,
different dissipation behaviors can be achieved. For example,
setting λ1 = 0 and λ2, . . . , λN > 0 results in a system that
selectively dissipates energy in directions perpendicular to the
desired motion. Hence, external work in irrelevant directions
is opposed while along the integral curves of f(ξ) the system
would be free to move.

IV. PROPOSED CONTROLLER

Let the general DS be decomposed into a conservative part
and a non-conservative part:

f(ξ) = fC(ξ) + fR(ξ) (6)

where fC is a conservative DS, i.e. there exists an associated
potential function VC(ξ) such that fC = −∇VC(ξ) and where
fR denotes the non-conservative part. Note that any system
can be written on this form, e.g. if no conservative part can
be extracted from f we would simply have f c ≡ 0.

Similar to the concept of energy tanks which are extensively
used in haptics and telemanipulation [7] and recently for
varying stiffness [3], we introduce a virtual state variable
s ∈ R that will act as a temporary energy storage for the

TABLE I
SPECIFICATIONS OF THE SCALAR FUNCTIONS α, βs AND βR

For some given upper bound of the virtual storage, the scalar functions
managing the flow of energy in and out of the virtual storage should be
continuous functions satisfying:{

0 ≤ α(s) ≤ 1 s < s

α(s) = 0 s ≥ s
(3)


βs(z, s) = 0 s ≤ 0 and z ≥ 0

βs(z, s) = 0 s ≥ s and z ≤ 0

0 ≤ β(z, s) ≤ 1 elsewhere
(4)

For limiting non-passive control effort when the storage is depleted, βR(z, s)
should be a continuous function satisfying:{

βR(z, s) = βs(z, s) z ≥ 0

βR(z, s) ≥ βs(z, s) z < 0
(5)

system. It is a virtual state to which we assign the following
dynamics:

ṡ = α(s)ξ̇
T
Dξ̇ − βs(z, s)λ1z (7)

where z = ξ̇
T
fR(ξ) has been introduced. The scalar functions

α : R 7→ R and βs, βR : R×R 7→ R control the flow of energy
between the virtual storage s and the robot. To ensure that s
remains positive and bounded above, α and βs should satisfy
the constraints listed in Table I.

The proposed controller is as follows:

τ c = g(ξ)−D(ξ)(ξ̇ − fC(ξ)− βR(z, s)fR(ξ)) (8)
= g(ξ)−D(ξ)ξ̇ + λ1fC(ξ) + βR(z, s)λ1fR(ξ)

The last equality is due to the fact that f(ξ) is an eigenvector of
D(ξ) as described in Section III. The scalar function βR(z, s)
has the role of preventing non-passive control action when the
virtual energy storage s is depleted, and should satisfy the
conditions listed in Table I.

Consider the following storage function:

W (ξ, ξ̇) =
1

2
ξ̇
T
M(ξ)ξ̇ + λ1VC(ξ) + s (9)

Taking the time-derivative along the trajectories of (1) with
control given by (8) yields:

Ẇ (ξ, ξ̇) =
1

2
ξ̇
T
(Ṁ− 2C)ξ̇ − ξ̇

T
Dξ̇ + ξ̇

T
τ e (10)

+λ1ξ̇
T
fC(ξ) + λ1∇V T

C ξ̇

+βR(z, s)λ1fR(ξ) + ṡ+ τ e

where dependencies of M,D on ξ and C of ξ̇ have been
omitted for cleanliness of notation. In Eq. (10) the first term
is null due to the skew-symmetry of the matrix Ṁ− 2C and
the terms on the second line cancel because fC(ξ) = −∇VC .
Substituting ṡ from Eq. (7) then yields:

Ẇ (ξ, ξ̇) = −(1− α(s))ξ̇
T
Dξ̇ (11)

+(βR(z, s)− βs(z, s))λ1fR(ξ) + ξ̇
T
τ e
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Fig. 2. The figure shows the experiment setup for the plate insertion task.
The motion starts somewhere in the encircled region. The DS is describing a
parapolic motion that has an atractor in one of three different perturbed target
locations whose approximate position is shown with red dots.

Note that by the conditions in Table I, we have:
1) Boundedness of s:

0 ≤ s(0) ≤ s⇒ 0 ≤ s(t) ≤ s ∀t > 0

2) Dissipation:
(1− α(s)) ≥ 0

3) Limitation of the non-conservative control effort if the
storage is depleted:

βR(z, s)− βs(z, s) = 0 ∀z > 0

which proves passivity of the proposed control scheme.
The specifications of the functions α, βs, βR allow some

freedom in the design. In our experiment, we used smooth step
functions using fifth order polynomials. The open parameters
of the controller are the eigenvalues of the damping matrix
λ1 . . . λN and the upper bound of the virtual storage s. The
first eigenvalue λ1 determines the feedback gain for tracking
the desired velocity and the remaining eigenvalues determine
the resistance that the robot will exhibit when physically
perturbed in directions orthogonal to the desired motion.

V. ROBOT EXPERIMENT

We consider a task of inserting a plate into a dishrack with
perturbed location. A DS describing the task was learned by
demonstration using Locally Modulated Dynamical Systems
(LMDS). The motion is a parabolic reaching motion, see Fig.
2. Details on LMDS and the particular DS for this task can be
found in [5]. The experiments were carried out on a KUKA
LWR 4+ robot using the Fast Research Interface (FRI).

A. Experimental setup

The task DS has a single attractor to which all trajectories
will converge. Ideally, this attractor would be placed exactly
in the slot where the plate should be placed. In real scenarios,
mismatch between environment state and the expected state is
unavoidable. To account for this, we conduced three sets of
task executions, in each of which the target location of the task
DS was offset in different locations behind the real location
of the dish rack, see Fig. 2. In each set of experiments, 5

(a) (b) (c)

Fig. 3. Left, Middle: Examples of final configurations for controller B.
Right: Typical final configuration for controller A.

task executions were carried out using two different controllers
described below.

A. The controller from Section IV with s = s(0) = 10,
λ1 = 20 and λ2 = λ3 = 200 is used. The value of λ1
was chosen to the minimal value capable of overcoming
static joint friction at the point of departure.

B. Openloop trajectory integrated from the initial position
of the robot in combination with a simple impedance
controller without inertia shaping. The stiffness was set
to K = kI3×3 with k = 100, the minimum value capable
of reaching the final point of the task in free motion.

All task executions were started somewhere in a small
region shown in Fig. 2. Rotational motion of the end-effector
was in both cases simply damped by a high amount (4 Ns/rad)
which effectively kept the orientation constant during the task
execution.

B. Results

Since very low gains were used, and no inverse dynamics
control was applied, it is not expected that either controller
would be able to track the nominal motion given by f with
good accuracy. This is confirmed in Figures 4a,4b and 4c
which plot the nominal and actual trajectories for each setup
for each perturbed location of the dish rack. Note especially
the ‘shortcut‘ tendency of the impedance controller. The pro-
posed controller has a clear advantage in terms of respecting
shape of the desired reaching motion. In this particular task,
the shortcut effect meant that the robot was approaching
the rack from the wrong direction, which sometimes lead
to interesting final configurations as depicted in Figures 3a
and 3b. In each of the three perturbed scenarios, controller A
consistently placed the plate correctly because the pattern of
approach was respected, see Fig. 3c.

As is clear from Figures 4d,4e and 4f, controller A also has
an advantage over controller B in terms of contact force after
impact. At the time of impact, the reference point for controller
B has already reached its final point, which is why there is
no gradual ramp-up of the contact force as would normally
be expected in contact with a timed trajectory. In the second
perturbed location (Figures 4b and 4e) controller B resulted in
some of the trials landing in a final configuration on the rack
and some of the trials landed in a configuration under the rack.
This is visible in the divergence of the trajectories near the end-
point in Fig. 4b right, and also the high variance in the final
contact force in Fig. 4e right. It should be emphasized that both
controllers have been chosen to be as compliant as possible
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Fig. 4. Top: Actual (solid lines) and nominal (dotted lines) trajectories for the dish rack experiment. Figures a,b,c show the results of the three different
perturbed scenarios, in each case with controller A on the left plot and controller B on the right plot. The motion in the YZ-plane is shown since the position
in X direction remains almost constant during the motion. Bottom: The plots show the norm of the external force over time. The raw data are plotted in
gray and a temporal average is plotted in black. Figures d,e,f show the data from each of the three perturbed scenarios with controller A on the left plot and
controller B on the right plot. Due to imperfect estimation of the external force from the torque sensors of the robot, there is a small force even before impact
with the dishrack.

for this task, but the low stiffness is not enough to ensure a
low contact force for positioning errors of this magnitude.

VI. CONCLUSION

We have proposed a controller allowing to use the full
modeling power of DS task representations at task execution
time by closing the loop so that the DS is continuously
updated with the actual state of the robot. We demonstrated
the approach in a robotic manipulation task with unexpected
collisions and showed the advantage over the classical ap-
proach of integrating a reference trajectory and following it
with an impedance controller. We believe that the passivity
(which ensures to some extent safe human-robot interaction),
and the reactivity of closed loop DS make the proposed control
scheme ideal for object hand-over scenarios and we will look
specifically at this application in future research.

The results from this initial study are encouraging and show
great potential for using closed loop DS in interaction control
scenarios. The impedance of the robot is determined 1) by the
DS and 2) by the choice of the eigenvalues of the damping
matrix. An interesting perspective of the proposed controller is
that the resistance to a perturbation can be tuned independently
of the recovery from a perturbation. In impedance control,
both of these are essentially determined by the stiffness term
and are hence identical: if a force tries to push the robot
off its reference trajectory it will be opposed, and when
the perturbing force is released the robot will return to the
reference trajectory. This behavior is just a special case of
what is possible with the proposed controller. For example, the
proposed controller would also oppose a force that moves the
robot perpendicular to its desired velocity. But after the force
is released, the robot may resume the task along a different
path.
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