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Abstract—Object handover is a basic and yet essential ca-
pability for robots interacting with humans in a broad range
of applications, including caring for the elderly, assisting in
a manufacturing workcell, etc. It appears deceptive simple, as
humans perform object handover almost flawlessly. The success
of humans, however, belies the complexity of object handover
as a collaborative physical interaction between a robot and a
human. This works addresses the problem of dynamic object
handover, for example, when a robot hands over a water bottle
to a marathon runner passing by a water station. We formulate
the problem as context-aware policy search, which enables the
robot to learn dynamic object handover through interaction with
the human. One key challenge here is to learn the latent reward
of the handover task under noisy human feedback. Experiments
show that the robot can learn to hand over an object with very
high success rate. It can also adapt to the dynamics of human
motion naturally.

I. INTRODUCTION

In the future, robots will become efficient helpers of humans
in everyday tasks. A key physical interaction channel between
robots and humans is object transfer. In order for robots to
become trustworthy helpers of humans, they need to master
their handover skill in a wide variety of different situations.
Robots today execute object transfer in a static manner by
holding the object at a fixed location and wait for the human to
take it. This is a very limited setting, which does not exhibit the
dexterity, dynamics and generality of human to human object
transfers. In this paper we address the problem of learning
dynamic, human-like handover robot skills, while physically
interacting with humans in different situations.

Humans are experts in transferring objects to one another
without conscious planning of the hand and finger movements.
However, programming an object handover skill for a robot
is highly challenging. Firstly, a handover does not always
happen in a static scenario, but in a more dynamic setting. In a
static handover scenario the physical interaction during object
transfer happens at a fixed location. On the other hand, in a dy-
namic handover situation when there is nonzero hand velocity
during physical interaction, careful control of the finger and
hand movements are required to ensure a robust transfer while
maintaining low forces and jerks. Such a dynamic scenario
is, for example, when a bottle of water is handed over to a
runner. Other than the level of dynamics, a handover depends
on many other factors, such as object type, human features
(old – young, weak – strong, etc.), human preference, etc.
Secondly, even for humans it is difficult to define what a
“good” and successful handover is, and thus, it is challenging

to find appropriate robot controllers for human-like handovers.
Lastly, robots have a significantly lower amount of actuation
and perception capability compared to humans. Moreover, the
structure of the robot arm and hand is considerably different
from that of humans. Thus, finding skills equivalent to that of
humans (e.g. by demonstration) is not straightforward.

In this work, we address the problem of finding human-
like dynamic handover skills for robots in a Policy Search
[5] setting. Policy Search (PS) is a particularly successful
Reinforcement Learning (RL) approach to learn skills for high
DoF robots. PS algorithms learn the parameters of a task-
appropriate control policy by maximizing the expected reward,
which is the measure of how well the robot is performing.
However, to find high quality robot skills, we need to identify
the control policy to use and the reward function we aim to
maximize. In this paper we discuss 1) a controller architecture
for object handovers, 2) how to learn a latent reward function
of the task from high level human feedback, and finally,
3) we demonstrate the learned dynamic handover skill in
experiments. Overall, the learned handover is successful (fast
and robust) over 95% of all experiments. Video footage of
some typical experiments before and after the learning is
available at http://youtu.be/QG-C9hW3YcU. More details can
be found in [11].

II. RELATED WORK

Human-robot handovers. Human-robot handovers have
been studied by many researchers in the past. One important
question many papers targeted is how to generate human-like
and legible trajectories for robots to communicate intent and
adapt to human preferences [8, 1, 6]Another set of works
analyze the complete handover process (pre-, during- and post-
handover) and propose control algorithms for human-robot
object transfers [12, 7]. In the above papers handovers were
considered only in a static case, that is, the physical interaction
happens at a fixed location.

An efficient object transfer also requires a robust control
of grip forces. Research in human-human object handovers
showed that human grip force is typically linear in the load
force [2]. It was also observed that the giver overloads the
taker, such that the taker has an excess of grip force, presum-
ably to ensure a robust transfer.

Policy Search with human feedback. Robot skill learning
by policy search has been highly successful in recent years
[5]. Policy search algorithms perform an iterative update of
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the parameter distribution of a control policy by maximizing
the expected reward. In order to allow robot skills to adapt
to different situations, contextual policy search has been
proposed [9, 10]. In contextual policy search we learn a
conditional policy that maps a context parameter to a controller
parametrization. The context variable is task dependent, and
it is used to fully describe a given situation. For example,
in the dart throwing game the context may represent the
target coordinates, while the parametrized control policy will
generate the motion.

Policy Search algorithms assume that a reward function is
given to guide the learning. However, in many learning tasks
it is difficult to define an appropriate reward function. Daniel
et al. use reward feedback of humans to learn manipulation
skills for robot hands [4]. In our paper, as opposed to previous
work, we mix both preference and absolute human feedback
to learn the latent reward function to guide the learning.

III. PROBLEM FORMULATION AND APPROACH

A. The handover situation

In this work we are considering learning and generalizing
robot dynamic object transfer skills over a wide variety of
static and dynamic handover situations. We assume that both
the human and the robot are aware of the handover situation
and we focus on finding appropriate robot arm and hand
controllers for human-like handover skills during physical in-
teraction. We distinguish between static and dynamic handover
skills based on the velocity of the human hand motion during
the handover process. For example, static handovers can be
considered when the human reaches out for an object, or when
walking up to the robot and taking the object from it. In both
of these situations the hand velocity is typically low during
physical interaction, that is, until the robot releases the object.
In a dynamic handover situation however, the hand velocity
and acceleration of both the taker and/or the giver is nonzero
and might not even have the same direction, for example,
when handing over a leaflet to a pedestrian. This will generate
forces and torques during the physical interaction that are not
contributed to the object load. This makes the finger and arm
control more challenging as opposed to the static handover
scenario.

In our problem formulation we consider the robot to be
the giver that aims to hold the object at a fixed location and
we consider the human to be the taker. We hypothesize that
the giver conditions her dynamic handover skill based on the
situation, in our case the hand velocity of the taker, which
is a measure of how dynamic a handover is. We assume that
the handover controller of the robot giver, which ultimately
encodes the finger and hand movements, is parametrized by
a vector ω . After choosing a controller parametrization, the
deterministic control policy will generate control signals ut =
πω(xt), t = 1, . . . ,T , such as torques and grip forces given the
state xt of the robot at time t.We denote the situation relevant
parameters, in our case the hand velocity of the taker, with
the context variable s. Our goal is to find a conditional policy
π(ω|s) that maps contexts to controller parametrizations, such

that the giver performance is optimal w.r.t. a reward function
in a wide variety of dynamic handover situations.

B. The control architecture

In our experiments we learn three different sets of parame-
ters. As trajectory generator we solely use a linear trajectory
generator that tracks the right hand of the human with constant
speed. However, the hand tracking is only enabled in a certain
distance between the robot and the human hand. The minimal
distance is required to enable safe handover, and the maximal
distance is required to avoid generating unfeasible trajectories
for the robot.

For tracking the trajectory, we use Cartesian compliant
control, which generates a contact force and torque F =M∆ẍ+
D∆ẋ + P∆x, where ∆x is the deviation from the reference
trajectory. We choose M to be the intertia of the robot at the
current state and we set D such that the closed loop control
system is critically damped. For stiffness parameters P we
learn the translational stiffness and 1 parameter for all the
rotational stiffness values.

In our experiments we assume a position controlled fin-
ger controller, where the grip force can only be controlled
indirectly via the finger positions. For a certain object we
first identify a finger position that exerts the minimal possible
grip force. With the minimal finger position pmin the robot
barely holds the object and with some effort a human can
take the bottle. The commanded finger position is given by
p f inger = (Gbottle − Fhuman)×m + pmin, where Gbottle is the
bottle weight and Fhuman is the magnitude of the measured
human force. The only parameter we learn is the slope m. A
higher slope parameter will result in firmer grip.

We collect the parameters of the control architecture in ω .
That is, the minimal and maximal hand tracking distance, the
stiffness parameters and the slope parameter for hand control.
We hand-tune the initial policy π(ω|s), such that it performs
well in static handover scenarios.

C. Learning the handover skill

We consider finding the optimal conditional policy π(ω|s)
as a contextual policy search problem [9, 5, 10]. In general,
π(ω|s) is considered a stochastic policy to enable exploration
during the learning process. The optimal policy maximizes
the expected reward R(ω,s) ∈ R over the joint distribution
µ(s)π(ω|s)

π
∗ = argmax

π

∫
s
µ(s)

∫
ω

π(ω|s)R(ω,s),dωds. (1)

Here µ(s) represents a distribution over possible situations,
or contexts and R(ω,s) is the reward function that measures
how good the controller parametrization ω is in context s.
In practice, the policy is iteratively updated after collecting
N samples {ω i,si,R(ω i,si)}N

i=1. Although human-human ob-
ject transfers have been investigated in the past by many
researchers [8, 1, 2, 12], it is still not clearly understood what
is the underlying utility function humans try to maximize. This
makes finding the true reward function R(ω,s) for human-
robot object transfer a tedious task.
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Fig. 1: The human-robot handover skill learning framework.

Instead, humans may directly give feedback to the robot
on how well it is doing in a given situation. In this pa-
per we distinguish between absolute and preference human
feedback. Absolute feedback gives a direct assessment of the
robot performance, while preference feedback gives a relative
evaluation between two solutions. While the former has a
higher information content, the latter is typically easier to
assess by humans. Thus, our goal is to find a latent reward
function R̂(ω,s) from high level human feedback F , which
might refer to preference and/or absolute feedback.

We estimate the latent reward using a Bayesian approach.
We build on the work of Chu and Ghahramani [3]. They use a
Gaussian Process prior and propose a likelihood function that
gives the probability of a human preferring a solution over
another based on the latent reward difference. The posterior
is then maximized in a convex optimization problem over
the latent rewards. We extend the likelihood function of the
above approach with a Gaussian model for absolute human
feedback. This extension will leave the optimization problem
for finding the latent reward convex. Learning a reward model
for policy search has been considered in the literature for HRI
settings [4], mixing preference and absolute assessment of the
robot performance is novel. For learning the handover skill
we consider the control and learning architecture depicted in
Figure 1. As opposed to previous PS algorithms, we do not
consider the sample rewards to be known, instead we estimate
them as latent variables. In a toy experiment we observed that
even sparse absolute feedback improves learning performance
significantly and reduces the variance of the final performance.

IV. RESULTS

For the handover experiment we use the 7-DoF KUKA LBR
arm (Fig 2). For the robot hand we use the Robotiq 3-finger
hand. The fingers are position controlled, but the grip force
can be indirectly adjusted by limiting the finger currents. In
order for accurate measurement of external forces and torques,
a wrist mounted force/torque sensor is installed.

A. Experimental Setup

An experiment is executed as follows. First, a 1.5l water
bottle is placed at a fixed location, which the robot is pro-
grammed to pick up. Subsequently, the robot moves the bottle
to a predefined handover position. At this point we enable
compliant arm control and we use a Kinect sensor (Fig 2) to

Fig. 2: The hardware setup. We use the KUKA LBR arm with
the 3-finger Robotiq hand.

track the hand of the human. Subsequently, the human moves
toward the robot to take the bottle. While approaching the
robot, we use the Kinect data to estimate the hand velocity s
of the human, which we assume to be constant during the
approach. We only use data when the human is relatively
far (above 1m) from the robot. After the context variable is
estimated the robot sets its parameter by drawing a controller
parametrization ω ∼ π(ω|s). Subsequently, the robot and the
human make physical contact and the handover takes place.
Finally, the human evaluates the robot performance (preference
and/or absolute evaluation on a 1-10 scale, where 1 is worst
10 is best) and walks away such that the next experiment may
begin.

B. Learning Results

With the C-REPS learning algorithm we updated the policy
after evaluating a set of 10 experiments. Initially we used 40
experiments to start the learning. After evaluating a batch of
experiments we estimated the latent rewards from high level
human feedback.

The expected latent reward of the initial policy is estimated
to be around 6.8. Humans may give preference and/or absolute
feedback in a 1-10 scale. However, we noticed that humans
mostly gave absolute feedback for very good or bad solutions.
This is expected as humans can confidently say if a handover
skill feels close to that of a human, or if it does something
unnatural (e.g., not releasing, or dropping the object). After
evaluating the learning, roughly after 90 experiments, that is,
after 6 policy updates the expected latent reward rose to the
region of 8 over 5 experiments with low variance. But how
did the policy and the experiments change with the learning?

After evaluating nearly 300 experiments with the robot, we
had only one occasion that the robot dropped the bottle due to
failed grasping. In less than 10 experiments the Kinect could
not detect the human hand, which lead to a failed experiment.
Overall, the learned policy provided a successful handover
(fast and natural) in more than 95% of the experiments.

Human preferences for static handovers. For static han-
dover tasks we observed that compliance parameters were less
important for success, but a robust and quick finger control
was always preferred and highly rated. A preferred solution



always maintained a low jerk and forces remained limited.
Moreover, a successful handover happens relatively fast. In our
experiments we observed that a high quality solution happens
within 0.6 seconds and no faster than 0.4 seconds. Similar
results have been reported in human-human object transfers
experiments [2]. A disliked controller had low translational
stiffness and a stiff finger control, resulting in the robot not
releasing the object quick enough, which is considered a
failure. These experiments typically lasted for 1 to 2 seconds
until the bottle was released.

Human preferences for dynamic handovers. In dynamic
handover situations contact forces and jerks were signifi-
cantly higher compared to the static case. A typical preferred
dynamic handover controller has lower stiffness parameters,
especially in the direction of the motion during contact, and a
more firm finger controller. We noticed that a physical contact
time in a dynamic handover scenario is around 0.3− 0.6
sec. Based on the latent rewards, we noticed that there is a
strong preference towards faster handovers, as opposed to the
static case, where we did not observe such strong correlation
in handovers within 0.6 seconds. Interestingly, we noticed
that humans preferred stiffer finger controllers (m is high)
in dynamic handovers. We assume that this helps a safe and
quick transfer of the object from giver to taker. In a dynamic
handover situation vision might not provide a fast enough
feedback about the handover situation, and thus, an excess
of grip force would be necessary to ensure the robust transfer
and to compensate for inaccurate position control.

Overall we can conclude that learning indeed improved the
performance and adapted to human preferences. For static
handovers a fast and smooth finger control was necessary for
success, while in dynamic handover situation higher compli-
ance and a firm finger control were preferred. Video footage
of some typical experiments before and after the learning is
available at http://youtu.be/QG-C9hW3YcU.

V. DISCUSSION AND SUMMARY

In this paper we investigated how robots can learn dynamic
handover skills from humans while physically interacting with
them. Our proposed learning algorithm not only improves
initial performance, but is able to adapt to human preferences
and can generalize to multiple situations. We demonstrated in
robot experiments that the robot is able to successfully hand
over a water bottle, even in highly dynamic situations.

However, our work is also limited, as we do not consider
explicitly the adaptation of the human to robot performance,
but rather assume the policy of the human to be fixed. On
the other hand, in a realistic scenario humans (representing
the taker here) may also adapt to the policy of the giver, e.g.,
when taking an object from a child or an elderly. Thus, future
work will investigate how the policy of both the taker and the
giver can be considered in a learning or planning setup.
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