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Abstract—Handing-over objects is the foundation of many
human-robot interaction tasks. Toward seamless and effortless
hand-overs, it is desirable for a robot to predict human motion
and plan its own motion accordingly. In the scenario of human
(giver)-robot (receiver), we propose to enable the robot receiver
to predict when and where the object will be transferred, so
that it can actively reach out and pick up the object instead of
passively waiting for the object to be presented. To generalize this
motion prediction problem, we collected data on human reaching
motions in a 3D workspace, to test the performance of arm
motion models and linear regression models we propose for end
time and position prediction. Preliminary results from some of the
proposed models will be reported. Future work will thoroughly
compare the prediction performance of all the proposed models.
These prediction algorithms will be implemented on a humanoid
robot for tele-nursing, with which human-robot hand-overs are
compared to human-human hand-overs.

I. INTRODUCTION

Handing over objects is a crucial component of many
human-robot interaction tasks. Seamless and effortless hand-
overs are desired in intensive human-robot interactions such
as in patient caring. In human-human hand-overs, both the
giver and receivers play active roles by observing each other
and potentially rendering expectations of when and where the
object will be transferred. Particularly for a robot receiver,
which is less agile than a human, it is critical to predict the
end position and timing of the human giver’s hand motion and
plan its responding motion ahead of time accordingly. Using
motion prediction, a robot receiver can reach out to meet a
human giver instead of waiting passively for the object to be
presented. Such an active robot receiver may be more efficient
in hand-over tasks, and behave more naturally to the human
giver.

Previous research has studied online estimation of timing
and object transfer position for human-robot hand-over tasks.
Huber et al used a Kalman filter for online prediction of the
duration of consecutive working steps in an assembly task.
This Kalman filter estimated the time to pass the next assembly
part based on an linear dependency between complexity and
duration of an assembly step [3]. Furthermore, Glasauer et
al proposed a method to determine the hand-over position, by
combining an estimate based on a minimum-jerk trajectory and
an naı̈ve estimate approximately centered between the giver
and receiver [2]. The procedures in a typical human (giver) -
robot (receiver) task have been described in [4]. As shown
in Fig. 1, the prediction of end timing and position of the
human giver’s hand happens when a robot reaches out to take

the object. With an accurate prediction of timing and position,
a robot receiver can bring its hand to meet the human giver’s
hand at the right time and place. Compared to a scenario with
a passive robot receiver, the human giver has more control on
the hand-over position and timing, while the robot receiver is
more adaptive and its behavior is more human-like behaviors.

Fig. 1: Procedures of a typical human (giver)-robot (receiver) hand-over.

To generalize this hand-over prediction problem, this paper
aims at predicting the end time and position of human reaching
motion. We collected data of point-to-point reaching motions
in a three-dimensional workspace from 10 healthy subjects,
to test and compare the predictions of arm motion models
(e.g., a minimum jerk model [1]) and various trained regression
models (e.g., history-based linear regression, global feature-
based linear regression, etc.).

II. METHODOLOGY

This section presents our methodology for studying the
end time and position of reaching motions, introducing the
candidate prediction models and describing the experiment
conducted to collect reaching motion data. The candidate
prediction models include (1) the minimum jerk model, which
renders the hand trajectory by minimizing the 3rd-order deriva-
tives along the hand path, and (2) several linear regression
models that can be trained to predict end time and position
using the collected reaching motion data. These linear regres-
sion models have different input variables, but the same output
variables, i.e., the predicted end time tf , and end position x
with x, y, and z components. The predictions of these models
change as the reaching motion get closer to its end. For each
regression model, a set of model coefficients are computed
over the training data set and validated using another testing
data set. With the reaching motion data we collected, the
training and testing data set can be divided either by subject
or the target of the reaching motion.



A. Prediction Methods

1) Minimum Jerk Model: The minimum-jerk model is
proposed to predict hand trajectory in task space given the
initial/final times and positions of a hand motion. As the
cost function shown in Eq. (1), it minimizes the time-integral
of the squared 3rd-order derivatives of the two-dimensional
hand coordinates (i.e., x(t) and y(t)), and predicts velocity
profiles that are most similar to the experimental observations
by the ratio of peak velocity to average velocity along hand
trajectories.
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The advantage of the minimum-jerk model is that it provides
a simple analytical formula to predict hand position and
velocity, which can be easily generalized from 2D to 3D
movements. In Equations (2) and (2), x = [x, y, z]T denotes
hand position in a 3D workspace. The hand position and
velocity at time tc, denoted by xc and ẋc can be calculated
given the initial and final hand position (denoted by x0 and
xf ), and the start and end times of the movement (denoted by
t0 and tf ).
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where t = tc − t0 and d = tf − t0. Inversely, the final time
and position of hand movement xf and tf can be found by
resolving Eq. (2) analytically.

2) History-based Linear Regression Model: The history-
based linear regression model predicts the current output of
a time-varying variable based on the recent history of its
dependent variables. As shown in Eq. (3), given a linear model
of order n, the current predictions of final time and position,
denoted by xf and tf are linear combinations of most recent
n-step hand positions.

xf (ti) = x(ti−n)θ0 + x(ti−(n−1))θ1 + · · ·+ x(ti−1)θi−1

tf (ti) = x(ti−n)ϕ0 + x(ti−(n−1))ϕ1 + · · ·+ x(ti−1)ϕi−1 (3)

3) Smoothed Derivatives Linear Regression Model: As
shown in Eq. (4), the smoothed high-order-derivatives linear
regression model predicts xf and tf as a linear combination
of the most recent derivatives of hand position. Tentatively, we
use the first to fifth-order of derivatives, and each higher order
of derivative is computed using a smoothed lower derivative,
recursively. To be specific, the 3rd-order derivative (i.e. the
acceleration) is computed from the smoothed velocity, which
is further based on the smoothed position. The smoothing
window has a size of five steps. As a result, a higher-order
derivative represents more global features.

xf (ti) = x(ti−1) +

5∑
k=1

θk
dkx(ti−1)

dt

tf (ti) = x(ti−1) +
5∑

k=1

ϕk
dkx(ti−1)

dt
(4)

4) Global Feature-based Linear Regression Model: The
global feature-based linear regression model predicts xf and
tf based on global features such as the average hand position,
the average velocity, etc.. These global features are computed
using all existing hand position history. As shown in Eq. (5),
we tentatively renders the predictions as linear combinations
of the average hand position x̄ as well as average first- to
fifth-order derivatives, denoted by dkx(ti−1)

dt with k = 1 · · · 5.

xf (ti) = x̄(ti−1) +
5∑

k=1

θk
dkx(ti−1)

dt

tf (ti) = x̄(ti−1) +
5∑

k=1

ϕk
dkx(ti−1)

dt
(5)

5) Naı̈ve KNN Method: Using Naı̈ve K-nearest-neighbor
(KNN) method, we compare the global features of a reaching
motion at/until the current time step (the current “motion
status”) to the motion statuses of our recorded reaching
motions. Note that we can only compare the motion statuses
at which the hand has traveled for the same duration. Using
such comparisons, we can find K reaching motion trials that
are most similar to the motion to be predicted, and predict its
end time and position as the mean of those of the known trials.
Same global features in Section II-A4 can also be used here.
This naı̈ve KNN method is expected provide better predictions
as its reaching motion database get bigger.
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Fig. 2: As the hand moves closer to its end, a reaching motion can be
normalized with respect to its traveled time, path length and peak velocity.

6) KNN Method with Normalized Motion Features: Instead
of directly comparing motion status as in Section II-A5, for
this method we first normalize the hand position and velocity
profiles of a reaching motion with respect to the percentages
of path length traveled and time elapsed. As shown in Fig. 2a,
at each time step, the percentage of path length traveled and
the percentage of time elapsed are computed for an existing
history and are plotted against each other. The darker lines
are the plots at the earlier stage of the motion, while the
bright magenta lines are the plots when the motion is close
to its end. Similarly, Fig. 2b and 2c normalize the velocity
profiles with respect to the peak velocity of the motion and



then plot it against the percentage-wise path length and time,
respectively. Such normalized plots represent the characteris-
tics of a reaching motion at its different percentages regardless
of speed and magnitude of the motion. These plots can be
approximated by high-order polynomial fitting, which results
in characteristic coefficients that represent the motion status
at different motion stages. To predict the final position and
total duration of a motion, we first compute this characteristic
coefficients for the motion to be predict with its existing
history. These coefficients will be compared to the coefficients
of known motion, to find out with respect to the total distance
and time to be traveled, how many percentages the hand has
traveled. Given these percentages, and the distance traveled
and time elapsed, we can computer how much further and
longer the hand will keep traveling.

7) Position Tracking - A Trick to Meet at the Same Time and
Position: Instead of predicting the end position and time of
a reaching motion, the robot receiver’s hand can continuously
track and move toward the human giver’s hand, which also
guarantees that they will meet at the same time and position.
In [4], the velocity of the robot hand is controlled to be
proportional to the distance from the human’s giving hand.
In our study, this position tracking method can be considered
as a baseline to evaluate our controller with motion prediction
algorithms, since one important goal we want to achieve is
handover efficiency.

B. Data Collection
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Fig. 3: (a) and (b) show the top and front views of the spherical workspace,
respectively. (c) Eight targets are selected among all the available targets
(denoted by blue dots in circles). (d) A subject is performing the instructed
reaching movements, with markers attached to her right arm and torso.

To study the end position and timing of human reaching
motions, we conducts experiments to collect data on point-to-
point reaching motion. In this experiment, ten healthy subjects

(six males and four females) were instructed to conduct
reaching movements with their right arms to each of the eight
targets specified in the spherical workspace (Fig. 3). Each
subject performs eight reaching motion sessions. Motions of
the same session has the same end target, starting from one
of the rest seven targets. Thus, a complete session consists of
five repetitions of seven different motions. The total number
of trials for each subject was 8 × 7 × 5 = 280. During the
experiment, a subject sit in a chair with a straight back support.
The chair was placed such that the subject can point at the tar-
gets with comfort and with his/her elbow naturally flexed. The
height of the workspace center was adjustable and was always
aligned with the right shoulder of the subject. The subject’s
right arm was free for reaching movements, but the body of
the subject was set against the chair back to minimize shoulder
displacement. During the reaching movements, subjects kept
the pointing fingers in line with the forearm to minimize wrist
flexion.

Subjects were asked to point with the index finger tip at their
comfortable paces. At the beginning of each trial, the subject
was informed of the start and end targets of the trial. After
receiving a “start” command, the subject moved his/her index
finger from the start target to the end target. A motion capture
system recorded a single file for each trial at sampling rate of
100 Hz. As shown in Fig. 3d, passive reflective markers were
attached to the subject’s torso and right arm. Each recording
started from the time when the subject points the index finger
to the start target and ended after the index finger tip becomes
steady at the end target. To minimize the effect of fatigue,
subjects took a rest after completing each session. Further
analysis are based on the recorded shoulder, elbow and wrist
positions.

III. PRELIMINARY RESULTS

This section presents the preliminary results of the end
position and time prediction performance of some of the
models we proposed. Here we compare the prediction from
models based on (1) jerk minimization, and (2) recent history.
Due to limited space, we only present the prediction for the
x-component of a 3D reaching motion, since the prediction
algorithms can be applied similarly to the y- and z-components.
For each prediction model, we present the representative
prediction results for a single reaching trial. Among the ten
subjects, we randomly select one for model training and
another one for model testing, each providing 280 reaching
motion trials. For each reaching motion trial, the end position
prediction performance is measured by the ratio of prediction
error to the motion range of that trial. With all the trials from
a testing subject, we plot distribution of the prediction error
ratio every 10% of the motion to show how the prediction
error ratio changes as the motion develops.

Fig. 4 shows the prediction performance using minimum
jerk model. The analytical formula for xf and tf can be
derived such that there is no need for prediction model training.
We randomly select a subject to test the model prediction
performance against all the subject’s reaching motion trials.
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(d) End Time.

Fig. 4: End time and position (x-component) using minimum jerk model.
(a) and (b) are predictions for a single reaching motion. (c) and (d) are the
distributions of prediction error ratio.

As shown in Fig. 4c the prediction error ratio of end position
is reduced to less than 10% after two thirds of the motion has
been observed, while the prediction error ratio for end time
is mostly reduced to less 50% of the total motion time after
20% of the motion.
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(c) End Position.
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(d) End Time.

Fig. 5: End time and position (x-component) using history-based linear
regression model. (a) and (b) are predictions for a single reaching motion.
(c) and (d) are the distributions of prediction error ratio.

Fig. 4 shows the prediction performance using history-based
linear regression model. The model coefficients are trained
with one subject and tested against all reaching motion trials
of another. Note that both the training and testing subjects are

randomly selected. Comparing Fig. 5 and 4d with Fig. 5c
and 5d, the prediction error ratio of end position is reduced
at a much earlier stage of the motion than when using the
minimum jerk model, while the prediction error ratio for end
time is much worse than minimum jerk model performance,
all the way to the end of the motion.

IV. FUTURE WORK

In future work, we will thoroughly compare our proposed
timing and position prediction methods to find out which
one can provide the most accurate prediction at the earliest
stage of a motion. The winning prediction algorithm will be
implemented on a humanoid robot with a torso and two arms,
which is the major component of tele-nursing robotic system.
This tele-nursing robotic system is developed for attending
patients with highly infectious diseases (e.g. Ebola). Fig. 6
shows the sketch of the tele-nursing robotic system, and its in-
lab setup at its current system integration stage. The nursing
robot, nicked-named Ebolabot, is remotely controlled via an
operator console with a variety of input devices. It also serves
as a research platform for developing operator assistance
modules that fully or partially automate tedious and error-
prone tasks, and reduce user training time. The proposed hand-
over prediction algorithm will help the Ebolabot to receive
objects more efficiently from patients and human coworkers.

(a) (b)

Fig. 6: (a) Sketch of Ebolabot system - a tele-nursing robot system for
caring patients with highly infectious diseases. The robot (left) consists of a
humanoid torso, teleconference screen, and mobile base. The operator console
(right) consists of displays for, from left to right, the 3D map, camera feedback,
and GUI; two 6-DOF haptic input devices; and standard mouse and keyboard.
(b) In its current state, the Ebolabot system has its major hardware components
integrated, and is capable of basic teleoperation and motion planning.
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